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Abstract

This paper addresses the issue of constructing non-oscillatory, higher than second order, fluctuation splitting methods
on unstructured triangular meshes. It highlights the reasons why existing approaches fail and proposes a procedure which
can be applied to any high order fluctuation splitting scheme to impose positivity on it. Its success is demonstrated through
application to a series of linear and nonlinear scalar problems, using a pseudo-time-stepping technique to reach steady
state solutions on two-dimensional unstructured meshes.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The fluctuation splitting approach to approximating multidimensional systems of conservation laws has
developed to a stage where it can be used reliably to produce accurate simulations of complex steady state
fluid flow phenomena using unstructured meshes [12]. The most commonly used methods are second order
accurate at the steady state, which is deemed accurate enough for simulating a wide range of flows and, in
the presence of discontinuities, they are also required to avoid introducing unphysical oscillations into the
flow. Within the fluctuation splitting framework, the PSI scheme [13] (or one of its variants) has provided
the basis for a range of methods which have successfully achieved these goals, particularly for the scalar case.
It is a nonlinear upwind scheme which, when it is used to simulate scalar conservation laws, exhibits second
order accuracy at the steady state for smooth solutions, guarantees positivity (even in the presence of discon-
tinuities), and gives rapid convergence to the steady state, all without the necessity for additional artificial
viscosity.
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Generalisations of the PSI scheme have been developed for application to nonlinear systems of equations
[19]. The most commonly used schemes for systems take the form of matrix distribution schemes. A nonlinear
matrix distribution form of the PSI scheme exists, but it has so far proved more successful to reinterpret the
PSI scheme as a nonlinear ‘‘blending’’ of two linear schemes, the non-oscillatory N scheme and the second
order accurate LDA scheme, both of which have natural matrix forms which can be applied to nonlinear sys-
tems of equations [1]. Additional research, which led to the development of wave decomposition models (see
[19] for a summary), has shown that by preconditioning the equations, an optimal decoupling can be achieved.
This allows for scalar components, which take the form of advection equations, to be split off so that they can
be approximated independently using the original PSI scheme [13], before recombining the components to give
a conservative update to the solution. The work presented here demonstrates that it is possible to create a
scheme which combines positivity with a higher order of accuracy (as well as higher accuracy) than the PSI
scheme at the steady state. The discussion will be restricted to scalar equations, which can be applied directly
to the simulation of passive transport phenomena or individual components of a more complex system,
though their use in the latter is left to future research, since it is not yet clear what their ideal extension to
nonlinear systems should be.

More recently, research has focused on the development of more accurate fluctuation splitting methods, for
both steady state and time-dependent problems. This has led to the creation of a number of third and higher
order accurate schemes, each one based on a standard approach to constructing a higher order representation
of the dependent variables.

The first third order fluctuation splitting scheme to be developed was that of Caraeni et al. [10,11], who
created a quadratic representation within each mesh cell via the reconstruction of local gradients of the depen-
dent variables at the mesh nodes, obtained using the surrounding data. The resulting fluctuation was distrib-
uted using the non-positive LDA scheme [13] so, although the results shown for smooth viscous fluid flow and
turbulence transport were excellent, unphysical oscillations still occur in less smooth situations.

Abgrall, along with Roe [8] and Mezine and Andrianov [4,7], proposed a similar idea, but constructed the
higher order fluctuation using extra information about the dependent variable stored at the additional nodes
created by a uniform global subdivision of the mesh. The solution is stored and updated at all of the submesh
nodes and the distribution of the fluctuations is carried out on the subtriangles. The proposed third (and
higher) order schemes are almost non-oscillatory.

A third, less successful, approach was proposed by Hubbard and Laird [17], who obtained higher order by
extending the stencil of the distribution of the second order fluctuations. It was highly sensitive to the mesh
structure, and lacked robustness, but the underlying concept (of extending the stencil) remains valid as an
approach to achieving higher order accuracy if it is used instead to construct a higher order representation
of the dependent variable.

This work will consider the first two of these techniques for constructing a continuous piecewise quadratic
interpolant, which leads to third order methods. This higher order interpolant is used to construct a more
accurate fluctuation which, if distributed completely using bounded distribution coefficients, gives a high order
method [1,6]. It is straightforward to generalise the concepts to higher than third order, though the implemen-
tation will be more complicated.

Each approach has achieved higher than second order accuracy for the scalar advection equation, and that
of Caraeni et al. has already shown a great deal of promise in more practical situations. However, none of
them has yet combined this with positivity, except with the aid of the flux-corrected transport (FCT) algorithm
[18,24] used with second order schemes in [14,17]. This paper will propose a method for imposing positivity on
these high order schemes which avoids the use of any post-processing techniques such as FCT and has the
additional benefit (not discussed here in detail) of providing a simple framework for creating a positive
p-refinement algorithm for fluctuation splitting.

The research presented considers the scalar advection equation and a form of the inviscid Burgers’ equa-
tion, approximated on two-dimensional, unstructured, triangular meshes. The fundamentals of first and sec-
ond order fluctuation splitting schemes will be summarised in Section 2, after which the existing high order
methods, of Caraeni et al. [10] and Abgrall and Roe [8], will be outlined in Section 3, along with the reasons
underlying their lack of positivity. The discussion will suggest a modification which can be applied to any of
these approaches in the steady state case to impose positivity on the scheme, and this is presented in detail in
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Section 4. A series of results for standard linear and nonlinear test cases will be given in Sections 5 and 6 to
illustrate the effectiveness of the new approach at removing unwanted oscillations without unduly affecting the
underlying scheme’s accuracy. Finally, some conclusions are drawn in Section 7, alongside a brief description
of possible directions for future work.

2. Fluctuation splitting

Consider the two-dimensional scalar conservation law given by
ut þ fx þ gy ¼ 0 or ut þ~k � ~ru ¼ 0; ð1Þ
on a domain X, with u(x,y, t) = h(x,y, t) imposed on the inflow part of the boundary oX.~k ¼ ðof
ou;

og
ouÞ

T defines
the advection velocity associated with the conservation law. This equation has an associated fluctuation, as-
sumed here to be calculated over a triangular mesh cell D and given by
/ ¼ �
Z

D

~k � ~ru dX ¼
I

oD
u~k �~n dC; ð2Þ
in which~n represents the inward pointing unit normal to the cell boundary. When u is assumed to have a piece-
wise linear continuous representation with values stored at the mesh nodes, the discrete counterpart of / is
evaluated using an appropriate (conservative) linearisation [13]. Ideally, this allows the integration in Eq.
(2) to be carried out exactly, giving
/ ¼ �SD
~~k � ~ru ¼ � 1

2

X
i2D

ui
~~k �~ni; ð3Þ
where SD is the cell area and the symbol ~ indicates an appropriately linearised quantity, in this case the local
advection velocity. The index i loops over the vertices of D, and ~ni is the inward unit normal to the ith edge
(opposite the ith vertex) multiplied by the length of that edge. This linearisation is straightforward in the spe-
cial cases of divergence-free linear advection and Burgers’ equation, the examples which will be used later in
this paper. In both cases it equates to taking the arithmetic mean of the cell vertex values.

A simple forward Euler discretisation of the time derivative leads to an iterative update of the nodal solu-
tion values which is generally written as
unþ1
i ¼ un

i þ
Dt
Si

X
j2[Di

aj
i/j; ð4Þ
where Dt is the time-step, Si is the area of the median dual cell corresponding to node i (one third of the total
area of the triangles with a vertex at i), aj

i is the distribution coefficient which indicates the appropriate pro-
portion of the fluctuation /j to be sent from cell j to node i, and [Di represents the set of cells with vertices at
node i. Conservation is assured as long as
X

i2Dj

aj
i ¼ 1 8j; ð5Þ
where Dj represents the set of nodes at the vertices of cell j, i.e. the whole of each fluctuation is sent to the
nodes. Note that the distribution has been restricted here so that a cell can only make contributions to nodes
at its own vertices, allowing the scheme to be implemented very efficiently. The time derivative term in this
construction is included here purely as a device for iterating to the steady state, but its presence would be nec-
essary for time-dependent problems, in which case it must be integrated in a manner consistent with the under-
lying representation of u if the order of accuracy of the steady state approach is to be maintained [4,10].

2.1. The N scheme

The most successful attempts to impose positivity on higher than first order fluctuation splitting schemes
rely heavily on the linear first order, positive fluctuation distribution scheme known as the N scheme [13],
which is defined as follows:



M. Hubbard / Journal of Computational Physics 222 (2007) 740–768 743
1 For each triangle, locate the downstream vertices, i.e. those for which
~~k �~ni > 0, where ~ni is the inward

pointing normal to the edge opposite vertex i.
2a If a triangle has a single downstream vertex, node i1 say (cf. Fig. 1), then that node receives the whole fluc-

tuation /, so
ui1 ! ui1 þ
Dt
Si1

/; ð6Þ
while the values of u at the other two vertices remain unchanged.
2b Otherwise, the triangle has two downstream vertices, i1 and i2 say (cf. Fig. 1), and the fluctuation / is

divided between these two nodes so that
ui1 ! ui1 þ
Dt
Si1

/i1 ; ui2 ! ui2 þ
Dt
Si2

/i2 ; ð7Þ
where
/i1 ¼ �
1

2
~~k �~ni1ðui1 � ui3Þ; /i2 ¼ �

1

2
~~k �~ni2ðui2 � ui3Þ; ð8Þ
in which i3 denotes the remaining (upstream) vertex of the triangle. It is easily shown that /i1 þ /i2 ¼ / (for
conservation).

The distribution coefficients, aj
i in Eq. (4), can be derived easily from Eqs. (6)–(8). The resulting scheme is

clearly locally, and hence globally, positive so the iteration given by (4) is conditionally stable. The appropriate
restriction on the time-step at node i is given by
Dt 6
SiP

j2[Di
max 0; 1

2

~~k �~nj
i

� � : ð9Þ
Results: The test case used here to illustrate the properties of each scheme consists of advection in a circle, with
velocity ~k ¼ ðy;�xÞT and over the domain [�1,1] · [0,1], of the initial profile given by
uðx; y; 0Þ ¼
GðxÞ for � 0:65 6 x 6 �0:35; y ¼ 0;

0 otherwise:

�
ð10Þ
This is also imposed as the boundary function h(x,y, t) on the inflow boundaries of the domain while the
experiment is run to steady state. The exact solution is u(x,y) = G(r) for 0:35 6 r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 0:65, with

u(x,y) = 0 elsewhere. In this case ~r �~k ¼ 0, so the advection equation and the conservation law are equivalent
and the conservative linearisation is simple [13].

Results are shown in Fig. 3 for a uniform but genuinely unstructured triangular mesh consisting of 3806
nodes and 7370 cells (dx � 0.025), shown at the top of Fig. 2. The two cases used are defined by

Case A: G(r) = 1, which illustrates the positivity of the scheme;
Case B: G(r) = cos2(10p(r + 0.5)/3), which is more appropriate for determining the scheme’s ability to main-

tain a smooth peak without artificially steepening the profile.
Fig. 1. The splitting of the fluctuation distribution into one and two target cases.
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Fig. 2. The meshes used for the advection equation results obtained with the N, PSI and gradient recovery schemes (top) and the submesh
reconstruction schemes (bottom).
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The solution profile along the outflow boundary at y = 0 would ideally reflect the profile at inflow exactly,
but both here show the significant level of numerical diffusion incurred. This is unsurprising as the method is
easily shown to be at best first order accurate [13].

2.2. The PSI scheme

The nonlinear PSI scheme, devised by Struijs [23] and formulated algebraically by Sidilkover and Roe [22],
is the most commonly used of the second order positive fluctuation splitting schemes, and is easily defined
once the N scheme has been described.

Given that the contribution made by cell j to node i by the N scheme can be written as ð/j
iÞ

N ¼ ðaj
iÞ

N/j,
where /j is the fluctuation in cell j (see (3)), the contributions due to the PSI scheme can be defined as follows:
ð/j
iÞ

PSI ¼ ½ðaj
iÞ

N�þP
k2Dj
½ðaj

kÞ
N�þ

/j ¼ ðaj
iÞ

PSI/j; ð11Þ
in which [ ]+ denotes the positive part of the quantity within the square brackets. This scheme has a number of
notable properties (for all nodes i and cells j):
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Fig. 3. The N scheme applied to Test Case A (top) and Test Case B (bottom).
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� The scheme is conservative because
X
k2Dj

ðaj
kÞ

PSI ¼
X
k2Dj

ðaj
kÞ

N ¼ 1: ð12Þ
� ðaj
iÞ

PSIðaj
iÞ

N P 0, so the scheme is positive for an appropriate range of time-steps.
� jðaj

iÞ
PSIj 6 jðaj

iÞ
Nj, so the limit on the time-step given by (9) is sufficient to maintain this positivity.

� ðaj
iÞ

PSI 2 ½0; 1� is bounded, so the order of accuracy of the steady state scheme is equivalent to the order of
the error in the representation of / (in this case second order) [1,6]. This property is often referred to as
linearity preservation.

Results: The results for the PSI scheme are shown in Fig. 4 using the same mesh as before (shown at the top
of Fig. 2). The improvement in accuracy over the N scheme is clear, as is the lack of oscillations. This is con-
firmed by the more comprehensive comparison of results supplied in Section 5. However, the outflow profile
still does not reflect the inflow profile exactly (the square wave has clearly had its ‘‘corners’’ smoothed while
the smooth profile has lost height on its peak value) and could be improved by incorporating a more accurate
representation of the dependent variable into the method.

3. Higher order methods

A range of techniques exist for extending numerical algorithms to higher order accuracy. Two which have
been successfully applied to fluctuation splitting will be described here as a precursor to the introduction of the
proposed approach for imposing positivity.

3.1. Submesh reconstruction

The scheme of Abgrall and Roe [8] is based on a simple generalisation which differs mainly from the
schemes described in Section 2 in that the fluctuation / is approximated using a higher order polynomial rep-
resentation of the dependent variable. The procedure can be extended to arbitrary orders of accuracy and to
three space dimensions, but only the two-dimensional, third order case will be considered here.
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In this situation the dependent variable u is taken to be a continuous piecewise quadratic function with the
unknowns stored at the nodes of a globally refined mesh, created by subdividing each triangular cell into four
congruent subcells (see the left-hand diagram in Fig. 5). This makes it possible to construct a unique local qua-
dratic interpolating polynomial on each cell of the original mesh. The resulting fluctuation (2) can be evaluated
on any of the subcells, using an appropriate quadrature rule to ensure that the integral is evaluated to a high
enough degree of accuracy. Exact integration will be assumed throughout this work, as it is required in the
following analysis of each scheme’s positivity, but this is not necessary to achieve the desired order of accuracy
for the overall method. In fact, for a kth order method it suffices to evaluate the fluctuation exactly with
respect to a (k � 1)th degree polynomial representation of the flux and distribute this in a linearity preserving
manner [8]. The resulting fluctuations, now calculated within each subcell, are then distributed to the nodes of
the refined mesh.

The method proposed in [8] is based on the contributions given by
P S I s c
H u b b
ð/j
iÞ

HO ¼ ½ðaj
iÞ

N0 �þP
k2Dj
½ðaj

kÞ
N0 �þ

/HO
j ¼ ðaj

iÞ
HO/HO

j ; ð13Þ
in which /HO
j is calculated by evaluating (2) exactly according to the high order (HO) representation of u. The

indices in (13), and for all schemes based on this submesh reconstruction approach, now represent vertex i (or
k in the summation) of subcell j. As a consequence, the distribution of the fluctuation within each subcell re-
mains local to that subcell, although the scheme is not completely local because the reconstruction of the poly-
nomial within the subcell takes information from the rest of the full mesh cell.

The fluctuations defined by (13) are closely related to those of the PSI scheme (11) in form, but it is impor-
tant to note that the N scheme-like distribution coefficients, denoted by the superscript N 0, have a slightly dif-
ferent definition, i.e.
ðaj
iÞ

N0 ¼ ð/j
iÞ

N
=/HO

j ; ð14Þ
in which ð/j
iÞ

N is the contribution made to node i when the N scheme is applied to the fluctuation created by
integrating a linear representation of the dependent variable on subcell j. Furthermore, for reasons which will
be discussed in more detail in Section 3.3, the distribution coefficients which are actually used are
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Fig. 5. The storage of solution information for the quadratic reconstructions of Abgrall and Roe (left) and Caraeni et al. (right). A filled
circle indicates that a value of u is stored there and an unfilled circle indicates that a value of ~ru is calculated there.
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ðaj
iÞ

HO ¼ ½ðaj
iÞ

N0 �þ þ �P
k2Dj
ð½ðaj

kÞ
N0 �þ þ �Þ

; ð15Þ
where � is some small free parameter.
Results: The results for the Abgrall–Roe scheme are presented in Fig. 6, obtained using the mesh shown at

the bottom of Fig. 2, which has been constructed by regular subdivision of a 984 node, 1846 cell uniform but
unstructured mesh (giving 3813 nodes and 7384 subcells with dx � 0.025, a similar number of unknowns as
used in the other schemes) so that the subcells are similar in size to the cells of the mesh used for the other
methods. An improvement in accuracy is apparent in the profile at outflow of both test cases (and is illustrated
more clearly by the error measures given in Tables 1 and 2 in Section 5). However, this is at the expense of
small oscillations just visible at the discontinuities close to the inflow boundary in Test Case A (again, see
Tables 1 and 2).
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Fig. 6. The Abgrall–Roe scheme applied to Test Case A (top) and Test Case B (bottom).
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3.2. Gradient reconstruction

One alternative to subdividing the mesh to provide the additional degrees of freedom necessary to recon-
struct quadratic polynomials is to recover solution gradients at the mesh nodes and use these to obtain a qua-
dratic interpolant. This approach was taken by Caraeni and his collaborators [10,11]. The first stage of the
procedure used approximates the cell gradients using the Green–Gauss formulation, given by
~ruj ¼
1

SDj

I
oDj

u~n dC; ð16Þ
approximating the integral along each cell edge using the trapezoidal rule. These are then used to obtain an
approximation to the nodal solution gradients from
~rui ¼
1P

j2[Di
jSDj j

�1

X
j2[Di

jSDj j
�1 ~ruj: ð17Þ
This is second order accurate on uniform meshes but loses this property on the unstructured meshes shown in
Fig. 2, most seriously along the ‘‘diagonals’’ which clearly appear in the mesh structure, emanating from each
corner of the domain.

When quadrature is used to evaluate the fluctuations (2), the midpoint values of u are required (in the lin-
ear, third order case), and these are defined here by
umid ¼
ui1 þ ui2

2
þ
~rui1 � ~rui2

8
� ð~xi2 �~xi1Þ; ð18Þ
where i1 and i2 denote the vertices at each end of the mesh edge. This is used to calculate a high order fluc-
tuation within the cell, which is then distributed using the LDA scheme. As with the other schemes, the dis-
tribution of the fluctuation within each cell remains local to that cell. However, the reconstruction of the
gradient used in (17) takes information from the surrounding cells so the stencil of the scheme is not local,
and for even higher order accuracy the stencil would need to be extended further in order to provide approx-
imations to higher derivatives. The submesh reconstruction approach encounters a similar issue, in the sense
that the stencil of the scheme used to update a given node extends beyond the adjacent subcells, but the struc-
ture inherent in the subdivision ensures that the distribution of the fluctuation within a full mesh cell only de-
pends on information within that cell, whatever the order of accuracy required.

The gradient reconstruction scheme is not positive (and was never intended to be) but does achieve higher
order accuracy, and gives excellent approximations to a range of smooth solutions [9–11].

Results: The results obtained using Caraeni’s scheme are shown in Fig. 7 using the same mesh as was used
for the N and PSI schemes (the top mesh of Fig. 2). The improvement in accuracy is clear in the modelling of
the smooth profile but the effects of its lack of positivity are equally apparent in the test case involving the
discontinuous profile. This is confirmed by the evidence presented in Tables 1 and 2 of Section 5.
3.3. The problem

In the following discussion /HO
j will be used to denote the fluctuation within a mesh cell or, for any scheme

based on uniform subdivision of the mesh, subcell indexed by j and evaluated from the high order (quadratic)
interpolant. /LO

j will denote the fluctuation within the same (sub)cell but evaluated from the low order (linear)
interpolant. The analysis follows that given in [15] and closely resembles that presented in independent work
by Ricchiuto et al. [21] and Abgrall [2].

Three situations are worthy of discussion, none of which arises in the PSI scheme because, in that case,
/HO

j � /LO
j .

1. /HO
j /LO

j < 0 for some (sub)cells j, i.e. the high and low order fluctuations can have different signs. This is
most damaging when the N scheme gives only non-negative distribution coefficients ðaj

iÞ
N. In such cases the

procedure used by the Abgrall–Roe scheme (13) which, in the second order case, imposes linearity preser-
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vation on the N scheme and leads to the PSI scheme, now gives zero distribution coefficients for every ver-
tex of the (sub)cell, clearly violating conservation. The modified form given in (15) avoids this loss of con-
servation, but only by reverting to a central discretisation, aj

i ¼ 1
3
8i 2 Dj, in such situations, which is not

positive. The resulting scheme is also not continuous, which can present problems when attempting to con-
verge to steady state solutions.

2. j/HO
j j � j/

LO
j j for some (sub)cells j, even when /HO

j /LO
j P 0, i.e. the magnitude of the high order fluctua-

tion can be much higher than that of the low order fluctuation, even when they have the same sign. Since
the ratio of the two fluctuations is unbounded this can seriously restrict the condition (9) required for the
time-stepping procedure to remain positive, and hence the speed with which a positive steady state approx-
imation can be found (if one even exists).

3. The most troublesome case of all, which occurs in many (sub)cells in Test Case A, is when /HO
j is nonzero in

a (sub)cell for which ui1 ¼ ui2 ¼ ui3 . In such situations it is impossible to distribute /HO
j to the vertices of

(sub)cell j in a conservative manner while maintaining local positivity. Global positivity cannot therefore
be achieved without prior knowledge of the contributions from elsewhere. The consequence of this is that
it is not possible to construct a positive fluctuation distribution scheme which is conservative and higher
than second order accurate if the distribution of the fluctuation in a (sub)cell is restricted to be only to
the vertices of that (sub)cell. Thus one of the main design criteria used in the development of fluctuation
splitting methods cannot be enforced.
Remark. At this stage of the development of a high order non-oscillatory finite volume scheme a limiter would
be introduced to combine the low order positive scheme with the high order non-positive scheme. Applying
such an approach here (at least in the manner traditionally employed in finite volume schemes) would lead to
an inconsistency in the calculations of fluctuations in neighbouring (sub)cells, in that the edge contributions in
the boundary integrals in (2) would no longer necessarily cancel at internal edges, leading to a non-
conservative scheme. This is an issue which this work seeks to address, though it is worth noting that Abgrall
and Barth [5] have demonstrated that this loss of conservation may not always be a problem in practice. In
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Fig. 7. The Caraeni scheme applied to Test Case A (top) and Test Case B (bottom).
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particular, if discontinuities in the representation could be confined to smooth regions of the flow then the lack
of conservation should not have a detrimental effect on the quality of the solution. This possibility will not be
explored here, but the results produced suggest that a scheme of this form might be constructed in the future
(see Fig. 16 and the accompanying discussion in Section 5).
4. Suppressing the oscillations

A number of techniques exist which can be used to remove unphysical oscillations from computational sim-
ulations of hyperbolic conservation laws. For example, the flux-corrected transport (FCT) approach [18,24] is
widely used and has been applied within the fluctuation distribution framework [14,16,17]. In this work
though, the intention is to incorporate local positivity within the method itself, rather than applying a
post-processing step once low and high order updates have already been calculated.

It has been observed that, in the submesh distribution framework of Abgrall and Roe [8], it is always pos-
sible to distribute the high order fluctuation of the full mesh cell J, /HO

J ¼
P

Dk2DJ
/HO

k , to the six subvertices of
that cell in a manner which is both conservative and locally positive [2,15,20]. However, this observation has
yet to yield a scheme which combines positivity with high order accuracy. The schemes presented in [15] strove
for higher order accuracy, and although they improved on the PSI scheme in some cases and were free of oscil-
lations, they could not be proved to be positive. That technique is also essentially still a post-processing step,
can only be applied if the submesh reconstruction approach is used to obtain higher order accuracy, and does
not offer a straightforward generalisation to higher orders of accuracy. A second, considerably more successful
and flexible approach, will be presented here.
4.1. Limiting the interpolant

The modification presented in [15] addresses the problem of distributing the high order fluctuation in a pos-
itivity-preserving manner by, essentially, extending the stencil. An alternative approach is to modify the inter-
polant (and hence the fluctuation) in a manner which allows a positive distribution scheme within the existing
framework, i.e. one where the fluctuation in a (sub)cell is only distributed to that (sub)cell’s vertices. The linear
interpolant used in the second order scheme has already led to positive schemes of this type, e.g. N, PSI, so the
challenge is to find a procedure (similar in aim to flux/slope limiting in finite volume schemes) which can be
used to add a ‘‘limited’’ amount of a high order correction to a low order scheme to improve its accuracy while
maintaining positivity.

The approach to approximating equation (1) taken here consists of two stages. First it is necessary to apply
a simple adjustment to the interpolant, so that it is possible to distribute the resulting fluctuation within each
triangular (sub)cell to its vertices in a locally positive manner. Once the fluctuation due to this adjusted inter-
polant has been calculated, a second modification needs to be made, this time to the distribution scheme.

In order to determine the adjustment which must be made to the interpolant, consider �uð~xÞ, the linear inter-
polant of the values of the dependent variable u at the vertices of a given triangular (sub)cell, and duð~xÞ the
high order correction to the interpolant over that triangle, for which �uð~xÞ þ duð~xÞ is a high order representa-
tion of the data within that triangle (independent of the method used to obtain it).

The fluctuation due to the high order interpolant is given by
I
oD

u~k �~n dC ¼
X
edges

Z i2

i1

u~k �~n dC ¼
X
edges

Z i2

i1

�u~k �~n dCþ
Z i2

i1

du~k �~n dC

� �
; ð19Þ
in which i1 and i2 represent successive vertices around the triangular mesh (sub)cell (in an anticlockwise sense).
The first term on the right-hand side can easily be distributed in a positive manner using, for example, the N or
PSI scheme. The second is more problematic so here it is replaced by a ‘‘limited’’ high order correction term
which should return the high order interpolant whenever possible, but restrict the correction where this is nec-
essary to achieve positivity.
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It is simple to show that if the high order correction along each edge i1i2 of the triangle is limited to give a
modified high order correction du0ð~xÞ along that edge which satisfies
jdu0i1i2
ð~xÞj 6 Cjui1 � ui2 j 8~x ¼ l~xi1 þ ð1� lÞ~xi2 ; 0 6 l 6 1; ð20Þ
for some finite constant C P 0, then, subject to an appropriate restriction on the time-step in (4), it is possible
to distribute the fluctuation (2) due to the modified interpolant u0ð~xÞ ¼ �uð~xÞ þ du0ð~xÞ to the vertices of that
mesh (sub)cell in a locally positive manner.

The proof is straightforward once the fluctuation due to the ‘‘limited’’ interpolant u0ð~xÞ is written in the
form
 I

oD
u0~k �~n dC ¼

X
edges

Z i2

i1

u0~k �~n dC ¼
X
edges

Z i2

i1

�u~k �~n dCþ
Z i2

i1

du0~k �~n dC

� �
: ð21Þ
By defining a function ai1i2ð~xÞ for each edge, which is given by
du0i1i2
ð~xÞ ¼ ai1i2ð~xÞðui1 � ui2Þ; ð22Þ
it follows immediately that imposing (20) on this edge leads to jai1i2ð~xÞj 6 C for any~x on the edge, and then
from (21) that
I

oD
u0~k �~n dC ¼

X
edges

Z i2

i1

ai1i2ðui1 � ui2Þ~k �~n dCþ
Z i2

i1

�u~k �~n dC

� �
: ð23Þ
Clearly, given that a is bounded, this additional component can be distributed in a positive manner (for an
appropriate limit on the time-step) by sending the component corresponding to the integral along edge i1i2
to vertex i1 or i2 depending on the sign of the integral.

The following discussion suggests a particular form for the distribution which makes use of the notion of
upwinding, as introduced in the description of the N scheme, and leads to the modified schemes proposed
here. Noting that
ðuj � ukÞ � ðui � ukÞ � ðui � ujÞ; ð24Þ

and that, from (3), the low order fluctuation on the mesh (sub)cell is
/LO ¼ � 1

2

X
i2D

ui
~~k �~ni; ð25Þ
for an appropriate linearised advection velocity
~~k, leads to
I

oD
u0~k �~n dC ¼ 1

2
ðui � ujÞ ~~k �~nj þ

1

2
ðui � ukÞ ~~k �~nk þ

Z j

i
aijðui � ujÞ~k �~n dC�

Z k

j
ajkðui � ujÞ~k �~n dC

�
Z i

k
akiðui � ukÞ~k �~n dCþ

Z k

j
ajkðui � ukÞ~k �~n dC; ð26Þ
where i, j and k represent the three vertices of the (sub)cell under consideration and are chosen arbitrarily, but
taken in an anticlockwise sense. This immediately gives
I

oD
u0~k �~n dC ¼ 1

2
~~k �~nj þ

Z j

i
aij
~k �~n dC�

Z k

j
ajk
~k �~n dC

� �
ðui � ujÞ

þ 1

2
~~k �~nk �

Z i

k
aki
~k �~n dCþ

Z k

j
ajk
~k �~n dC

� �
ðui � ukÞ

¼ Kijðui � ujÞ þ Kikðui � ukÞ: ð27Þ
Since að~xÞ is bounded, so are Kij and Kik. In fact, simple bounds can be derived, for example,
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jKijj ¼
1

2
~~k �~nj þ

Z j

i
a~k �~n dC�

Z k

j
a~k �~n dC

���� ���� 6 1

2
~~k �~nj

���� ����þ Z j

i
a~k �~n dC

���� ����þ Z k

j
a~k �~n dC

���� ����
6

1

2
~~k �~nj

���� ����þ Z j

i
jajj~k �~nj dCþ

Z k

j
jajj~k �~nj dC 6

1

2
~~k �~nj

���� ����þ C
Z j

i
j~k �~nj dCþ C

Z k

j
j~k �~nj dC

6
1

2
~~k �~nj

���� ����þ C max
i!j
j~k �~nkj þmax

j!k
j~k �~nij

� �
: ð28Þ
Similar expressions can be derived for Kik. It then follows that the limited fluctuation, in the form (27), can be
used to produce a locally positive update to the dependent variable u as long as Dt is small enough, and that
the bound on the stable time-step satisfies Dt ¼ OðC�1Þ.

Remark. This proof is valid for interpolants of any order of accuracy, but for clarity the presentation below
will be based on a third order (quadratic) interpolant. It is conceptually straightforward to extend this to
higher order situations.
4.2. A limited third order scheme

Consider the two-dimensional scalar advection equation
ut þ~k � ~ru ¼ 0; ð29Þ

where, for the purposes of this illustration, ~k is assumed to vary linearly in space, u is assumed to vary in a
piecewise quadratic manner in space, and ~r �~k ¼ 0. This last condition means that the fluctuation can be
written
/ ¼ �
Z

D

~k � ~ru dX ¼ �
Z

D

~r � ð~kuÞ dX ¼
I

oD
u~k �~n dC; ð30Þ
where~n is the inward pointing normal. Since u is quadratic and~k is linear on the triangle, applying Simpson’s
rule along each edge of the triangle evaluates the fluctuation exactly, giving
I

oD
u~k �~n dC ¼ 1

6
ui
~ki �~nk þ 4

ui þ uj

2

� �
~kij �~nk þ uj

~kj �~nk þ 4 uij �
ui þ uj

2

� �
~kij �~nk

h i
þ 1

6
uj
~kj �~ni þ 4

uj þ uk

2

� �
~kjk �~ni þ uk

~kk �~ni þ 4 ujk �
uj þ uk

2

� �
~kjk �~ni

h i
þ 1

6
uk
~kk �~nj þ 4

uk þ ui

2

� �
~kki �~nj þ ui

~ki �~nj þ 4 uki �
uk þ ui

2

� �
~kki �~nj

h i
; ð31Þ
where i, j and k are again the vertices of the triangular (sub)cell, taken anticlockwise. The values uij, ujk and uki

represent the interpolated values of the dependent variable at the midpoints of each of the cell (for the Caraeni
scheme) or subcell (for the Abgrall–Roe scheme) edges. For higher order representations of the interpolant the
above expressions become more complicated due to the terms required for the additional quadrature points
used to integrate the fluctuation exactly.

At this point it is still possible to limit the (sub)cell fluctuation as a whole rather than considering the inter-
polant along each edge separately, as will be done here. Although it would most likely lead to a discontinuous
representation of the dependent variable, this may not be a problem in practice, as long as all of these discon-
tinuities lie in regions where the solution itself is smooth [5]. The results illustrated in Fig. 16 suggest that this
may indeed be the case but this possibility will be left as future work because the analysis of Section 4.1 sug-
gests that the fluctuation should be split into edge-based components, as is done in the N scheme, and as soon
as an edge-based limiting procedure is considered, the continuous representation used here results
automatically.

Now note that, for linear u and linear ~k satisfying ~r �~k ¼ 0, the fluctuation can be written as
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I
oD

u~k �~n dC ¼ 1

6
ui
~ki �~nk þ 4

ui þ uj

2

� �
~kij �~nk þ uj

~kj �~nk

h i
þ 1

6
uj
~kj �~ni þ 4

uj þ uk

2

� �
~kjk �~ni þ uk

~kk �~ni

h i
þ 1

6
uk
~kk �~nj þ 4

uk þ ui

2

� �
~kki �~nj þ ui

~ki �~nj

h i
; ð32Þ
so, since in this case
Z
D

~k � ~ru dX ¼
Z

D

~k dX

	 

� ~ru ¼ SD

~~k � ~ru; ð33Þ
where
~~k ¼ ð~ki þ~kj þ~kkÞ=3, it follows from (3) that in the high order case
I
oD

u~k �~n dC ¼ � 1

2
ui

~~k �~ni �
1

2
uj

~~k �~nj �
1

2
uk

~~k �~nk þ
2

3
uij �

ui þ uj

2

� �
~kij �~nk þ

2

3
ujk �

uj þ uk

2

� �
~kjk �~ni

þ 2

3
uki �

uk þ ui

2

� �
~kki �~nj: ð34Þ
As it stands this fluctuation, evaluated over a mesh cell for the Caraeni approach or a subcell for the Abgrall–
Roe scheme, cannot be distributed to the vertices denoted by the indices i, j and k in a manner guaranteed to
be positive. In order to allow this, the interpolated values at the midpoints of each of the (sub)cell edges, uij, ujk

and uki are limited so that they satisfy (20) and (22). For cubic or higher order representations the limiting is
applied to the values at all of the quadrature points along each (sub)cell edge, i.e. the quadrature points on the
subcell edges for the Abgrall–Roe scheme but on the full cell edge for the Caraeni approach.

The midpoint values are limited so that new values, u0ij, u0jk and u0ki, are created for the dependent variable
which, following (20), satisfy
u0ij �
ui þ uj

2

��� ��� 6 Cjui � ujj;

u0jk �
uj þ uk

2

��� ��� 6 Cjuj � ukj;

u0ki �
uk þ ui

2

��� ��� 6 Cjuk � uij;

ð35Þ
where C P 0 is some specified constant. In the general case, the higher order polynomial would be limited to
ensure that the above relations were satisfied at every quadrature point, not just the midpoints. The optimal
choice for C remains an open question, but three significant values are

� C = 0, which simply returns the linear representation (and, ultimately in the proposed scheme, leads to the
PSI).
� C = 0.25, which is the largest value that guarantees that the limited interpolant along each edge is mono-

tonic (in the quadratic case).Monotonicity can be proved simply by considering the Newton interpolant of
the three data points (xL,uL), (xM,uM) and (xR,uR), where
xM ¼
xL þ xR

2
and uM ¼

uL þ uR

2
þ CðuR � uLÞ; ð36Þ
for some constant C. These represent the quadrature points at which the interpolant is evaluated along the
edge of the triangle when Simpson’s rule is used. They are considered in one dimension for simplicity. Con-
structing the Newton interpolant leads to the equation
u ¼ uL þ ð2C þ 1ÞDu
Dx
ðx� xLÞ �

4C
Dx

Du
Dx
ðx� xLÞðx� xMÞ; ð37Þ
in which Du = uR � uL and Dx = xR � xL, and it immediately follows that
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du
dx
¼ ð2C þ 1ÞDu

Dx
� 4C

Dx
Du
Dx
ð2x� xL � xMÞ: ð38Þ
Now, for the interpolant to be monotonic, it is necessary that du
dx always has the same sign as Du

Dx, which leads,
after some algebraic manipulation, to the inequality
4C
Dx

ðx� xLÞ þ ðx� xMÞ �
Dx
2

	 

6 1: ð39Þ
This is a linear equation in x, so it suffices to impose (39) at the endpoints of the domain, xL and xR, to find
the admissible range of C. It then follows immediately that 0 6 jCj 6 0.25, i.e. C 6 0.25 in (35). The geo-
metric effect of using C = 0.25 is illustrated in Fig. 8. This is the value which is used in the rest of this work.
Using larger values of C tends to reduce the rate of convergence to the steady state, even when the same
time-step is used for the calculations.
� C = 0.5, which is the largest value that guarantees that the limited midpoint values are bounded by the end-

point values for any given edge (in the quadratic case).This follows immediately from imposing
minðuL; uRÞ 6 uM ¼
uL þ uR

2
þ CðuR � uLÞ 6 maxðuL; uRÞ; ð40Þ
and the geometric effect of using this value is illustrated in Fig. 8.

Note though that the time-step restriction depends on C, cf. Eq. (28), and that it becomes more severe as C

increases, i.e. Dt! 0 as C!1.
In this work, the limiting is simply carried out on an edge i1i2 by setting
u0i1i2
¼ ui1 þ ui2

2
þ ai1i2ðui1 � ui2Þ; ð41Þ
where
ai1i2 ¼ max �C;min C;
ui1i2 � ðui1 þ ui2Þ=2

ui1 � ui2

� �	 

; ð42Þ
in which division by zero is carefully avoided. For a single quadrature point this procedure is equivalent to
setting du0i1i2

ð~xÞ ¼ C0i1i2
dui1i2ð~xÞ where (42) ensures that C0i1i2

2 ½0; 1� for each edge. Once more, in the general
case this constraint would be imposed at each of the quadrature points and then, for example, the minimum
value of a could be taken on each edge.

If a discontinuous representation was considered, allowing the limiting to be carried out cell-by-cell instead
of edge-by-edge, then the interpolant at each quadrature point would still take a similar form to (41), but a
might need to be modified, to account for any changes in the constraints used to impose local positivity. How-
limiting thereconstruction along a celledge. The dotted lines arethelinear interpolants �uð ~x Þ , thedashed lines the
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ever, given that the positivity analysis typically decomposes the fluctuation into edge-based components, the
continuous representation is actually quite natural. In either situation, though, it is clear that the limiting of
the interpolant will tend to be applied in regions where the solution is varying rapidly. In particular, it will tend
to return a low order scheme close to discontinuities, as is also expected when the more traditional one-dimen-
sional limiters are used.

The modification given by (41) and (42) means that the fluctuation now takes the form
I
oD

u0~k �~n dC ¼ � 1

2
ui

~~k �~ni �
1

2
uj

~~k �~nj �
1

2
uk

~~k �~nk þ
2

3
aijðui � ujÞ~kij �~nk þ

2

3
ajkðuj � ukÞ~kjk �~ni

þ 2

3
akiðuk � uiÞ~kki �~nj; ð43Þ
which, according to the analysis of Section 4.1, can be distributed to the vertices i, j and k, in a positive man-
ner. It remains to determine the best way of doing this.

It is worth noting here that, when a piecewise linear representation of the dependent variable is used, the
fluctuation can always (even in the single target case) be written as
� 1

2
ui

~~k �~ni �
1

2
uj

~~k �~nj �
1

2
uk

~~k �~nk ¼
1

2
ðui � ujÞ ~~k �~nj þ

1

2
ðui � ukÞ ~~k �~nk ¼ /ij þ /ik; ð44Þ
where the vertices i, j and k are chosen so that the inflow parameters kj ¼ 1
2

~~k �~nj and kk ¼ 1
2

~~k �~nk have the same
sign (or are zero).

Remark. In the special case where the flow is parallel to an edge of the (sub)cell one of kj or kk will be zero and
the split illustrated by Eq. (44) is not unique. In the piecewise linear (second order) case, this coincides with the
situation where one of the edge contributions, /ij or /ik is zero, so even though the vertices represented by i, j

and k switch as the advection velocity rotates through this orientation, when the upwind distribution of, for
example, the N scheme is applied, the distribution still depends continuously on the advection velocity. The
situation is more complicated when a higher order representation is used.

It follows immediately from (44) and the definition of the inflow parameters below it that the low order
fluctuation is given by
/LO ¼ kjðui � ujÞ þ kkðui � ukÞ; ð45Þ

and that the N scheme (in both its one-target and two-target incarnations) can be viewed as distributing /ij via
Siui ! Siui þ
1

2
Dt ~~k �~njðui � ujÞ if

~~k �~nj 6 0;

Sjuj ! Sjuj þ
1

2
Dt ~~k �~njðui � ujÞ if

~~k �~nj > 0:

ð46Þ
A similar approach can be used to distribute /ik.
Since the fluctuation can be written
/ ¼ kþj ðui � ujÞ þ k�j ðui � ujÞ þ kþk ðui � ukÞ þ k�k ðui � ukÞ; ð47Þ
where [ ]+ and [ ]� are, respectively, the positive and negative parts of the argument within the square brackets,
an equivalent form of this distribution is given by
Siui ! Siui þ Dt½k�j ðui � ujÞ þ k�k ðui � ukÞ�;
Sjuj ! Sjuj þ Dtkþj ðui � ujÞ;
Skuk ! Skuk þ Dtkþk ðui � ukÞ:

ð48Þ
In the limited high order case
I
oD

u0~k �~n dC ¼ 1

2
ðui � ujÞ ~~k �~nj þ

2

3
aijðui � ujÞ~kij �~nk þ

1

2
ðui � ukÞ ~~k �~nk þ

2

3
akiðuk � uiÞ~kki �~nj

þ 2

3
ajkðuj � ukÞ~kjk �~ni; ð49Þ
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so, since
uj � uk � ðuj � uiÞ þ ðui � ukÞ � ðui � ukÞ � ðui � ujÞ; ð50Þ

it follows that the limited fluctuation, denoted here by the superscript LIM, can be written
/LIM ¼
I

oD
u0~k �~n dC ¼ 1

2
ðui � ujÞ ~~k �~nj þ

2

3
aijðui � ujÞ~kij �~nk �

2

3
ajkðui � ujÞ~kjk �~ni þ

1

2
ðui � ukÞ ~~k �~nk

� 2

3
akiðui � ukÞ~kki �~nj þ

2

3
ajkðui � ukÞ~kjk �~ni ¼ Kijðui � ujÞ þ Kikðui � ukÞ; ð51Þ
where Kij and Kik can be found easily, cf. (27). This now has a similar form to the linear fluctuation (45).
If Kij has the same sign as kj in (45), sending Kij(ui � uj) to the same node as kj(ui � uj) clearly leads to a

locally positive distribution. If Kij and kj have opposite signs then the distribution can be reversed, i.e.
Kij(ui � uj) can be sent to the opposite node on edge ij to ensure local positivity. The fluctuation associated
with edge ik can be treated in a similar manner.

Remark. When kj = 0 (or kk = 0) the N scheme gives no guidance on the direction in which the fluctuation
associated with edge ij (or ik) should be sent. In fact, due to the earlier limiting of the interpolant (35), it does
not matter how the vertices i and j (or k) are chosen in (45), from the point of view of ensuring positivity (in
practice, it is assumed that the N scheme would have sent its fluctuation in the direction suggested by kj > 0 (or
kk > 0), and the procedure described in the previous paragraph is followed). However, this is the situation
highlighted by the previous remark, in which the node to which the edge contribution is sent switches: for the
N scheme it coincides with that contribution being zero, so the distribution varies continuously as the
advection velocity rotates, but for the high order case this is no longer the case. The result is that the new
scheme does not depend continuously on the advection velocity, though this does not appear to have any
detrimental effect on the numerical results, particularly the rate of convergence to the steady state (see Section
5). Alternative, continuous, distributions have been considered, but the results were invariably far less accurate
than those obtained using this approach.

Since Kij and Kik are bounded, the above approach automatically leads to a positive scheme for small
enough Dt. Following the formulation of the N scheme given by (45)–(48) the contributions due to edge ij,
Siui ! Siui þ DtKijðui � ujÞ if Kij 6 0;

Sjuj ! Sjuj þ DtKijðui � ujÞ if Kij > 0
ð52Þ
clearly lead to a positive distribution for small enough Dt and, in the general case, the fluctuation can be
written
/ ¼ Kþij ðui � ujÞ þ K�ij ðui � ujÞ þ Kþikðui � ukÞ þ K�ikðui � ukÞ: ð53Þ
The distribution therefore takes the form
Siui ! Siui þ Dt½K�ij ðui � ujÞ þ K�ikðui � ukÞ�;
Sjuj ! Sjuj þ DtKþij ðui � ujÞ;
Skuk ! Skuk þ DtKþikðui � ukÞ;

ð54Þ
where the vertices i, j and k have been chosen according to the inflow edges dictated by the N scheme. This is
clearly locally positive for
Dt 6 min
�Si

K�ij þ K�ik
;

Sj

Kþij
;

Sk

Kþik

 !
; ð55Þ
which implies global positivity, under a slightly different constraint on the time-step. It is also worth recalling
that any fluctuation which can be written in the form
/ ¼ K 0ijðui � ujÞ þ K 0jkðuj � ukÞ þ K 0kiðuk � uiÞ; ð56Þ
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where each of the K 0 are bounded, can be distributed in a positive manner. There are clearly many possible
alternatives to the method described above but only this one, which has so far turned out to be the most suc-
cessful, will be considered here.

The form of the fluctuation given in (56) suggests that the scheme is compact, but it should be remembered
that this is only the case for the schemes based on a linear representation of the data, for which the K 0 depend
only on the local data ui, uj and uk. All of the higher order schemes presented gather information from further
away so the scheme is no longer local, although in the submesh reconstruction the stencil used to construct the
fluctuation does remain local to the mesh cell (not the subcell).

Once these contributions for the two edges have been gathered together to give contributions from (sub)cell
j to its vertices, the distribution coefficients of the resulting N-like scheme, denoted by the superscript N*, take
the form
ð/j
iÞ

N	 ¼ ðaj
iÞ

N	/LIM
j : ð57Þ
These can be limited in precisely the manner which created the PSI scheme (11) by imposing linearity preser-
vation on the N scheme, i.e.
ð/j
iÞ

PSI	 ¼ ½ðaj
iÞ

N	 �þP
k2Dj
½ðaj

kÞ
N	 �þ

/LIM
j ¼ ðaj

iÞ
PSI	/LIM

j : ð58Þ
The form of the distribution given in (57) ensures that at least one distribution coefficient within each (sub)cell
must be positive so, unlike with the Abgrall–Roe scheme, conservation is assured without the need for any
modifications. As with the PSI scheme, the limiting procedure will never increase the magnitude of the distri-
bution coefficients, so the positivity condition (55) is actually stronger than necessary.

Results: The results of applying the limiting to the two high order methods are shown in Figs. 9 and 10,
using the same meshes as were used before to obtain results for their respective basic schemes, described in
Sections 3.1 and 3.2. The oscillations have clearly been removed in each case (the contour plots show the
smoothness of the solutions and the minimum and maximum solution values are recreated exactly, to machine
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Fig. 9. The modified Abgrall–Roe scheme applied to Test Case A (top) and Test Case B (bottom).
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precision), at the expense of a drop in peak value in the smooth test case. A more detailed comparison with the
other schemes is provided in the following section.

5. Advection results comparison

Results have been shown in earlier sections to illustrate the behaviour of the methods described. Here, they
will be compared, not only for test cases A and B (defined in Section 2.1) but also for a third situation (Test
Case C), which uses exactly the same velocity field but a smoother solution profile, given by
uðx; y; 0Þ ¼
GðxÞ for � 0:75 6 x 6 �0:25; y ¼ 0;

0 otherwise

�
ð59Þ
in which
GðxÞ ¼
gð4xþ 3Þ for � 0:75 6 x 6 �0:5;

gð�4x� 1Þ for � 0:5 < x 6 �0:25;

�
ð60Þ
where
gðxÞ ¼ x5ð70x4 � 315x3 þ 540x2 � 420xþ 126Þ: ð61Þ

The exact solution to this problem, u(x,y) = G(r) for 0.25 6 r 6 0.75 with u(x,y) = 0 elsewhere, has continu-
ous fourth derivative so it is used to test order of accuracy in the presence of turning points in the solution,
using a non-constant (in space) advection velocity on both structured and genuinely unstructured (but uni-
form) triangular meshes.

The results obtained for the different methods are compared in Tables 1 and 2 and Figs. 11–14. For the
purposes of this comparison the new approach will be known as the Submesh PSI scheme when it is applied
to the Abgrall–Roe scheme and as the Gradient PSI scheme when it is applied to Caraeni’s method.

It is immediately apparent that the unphysical oscillations have been removed completely in each case.
There is very little difference between the quality of the profile at outflow for the two schemes (see Figs. 11
and 12), though both are significantly better than the PSI scheme. In the smooth test case (B), Caraeni’s
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scheme is clearly the best, but this is at the expense of the oscillations that are visible close to discontinuities in
test case A, which do not reduce in amplitude as the mesh is refined.

The results shown in Fig. 13 and Table 1 were obtained using a series of uniform unstructured meshes,
obtained using the same mesh generator, but successively halving the background mesh size specified. This
illustrates the rate at which the error would decrease as finer meshes are used which are not embedded in
the coarser ones, a situation which is commonly encountered when seeking more accurate solutions. The
errors obtained on the finest pair of meshes were used to estimate the order of accuracy obtained and shown
in the final two columns of Table 1. The same comparison was carried out on a series of structured triangular
meshes (a square mesh was subdivided in a manner whereby the diagonals alternated in direction from cell to
cell) and the corresponding results are shown in Fig. 14 and Table 2.

On the unstructured meshes it is clear that all of the high order methods lose their formal order of accuracy,
particularly those which use a submesh reconstruction. This is not surprising because the connectivity of the
mesh changes as the refinements are carried out, leading to a ‘‘bumpiness’’ in the reduction of the errors and
unreliable estimates of the orders of accuracy in Table 1. In Caraeni’s scheme, for example, the approach used
to reconstruct the nodal solution gradients, given by Eqs. (16) and (17), drops in accuracy so third order is no
longer expected. Even so, the schemes based on gradient recovery are significantly more accurate on the
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Table 1
Accuracy measures for the uniform unstructured triangular meshes (none of the ‘‘non-oscillatory’’ results goes negative)

Scheme Test Case A Test Case B Test Case C

min(u) max(u) max(u) outflow L1 order L1 order

N 0.0000 1.0000 0.5877 0.94 0.84
PSI 0.0000 1.0000 0.8355 1.93 1.89
Abgrall–Roe �0.0593 1.0131 0.9702 1.46 1.01
Submesh PSI 0.0000 1.0000 0.9180 1.09 0.53
Caraeni �0.1464 1.1301 0.9996 2.05 1.57
Gradient PSI 0.0000 1.0000 0.9242 1.83 2.10

The figures shown in the first three columns have been obtained on the 3806 node and subdivided 984 node meshes shown in Fig. 2.

Table 2
Accuracy measures for the uniform structured triangular meshes (none of the ‘‘non-oscillatory’’ results goes negative)

Scheme Test Case A Test Case B Test Case C

min(u) max(u) max(u) outflow L1 order L1 order

N 0.0000 1.0000 0.4670 0.91 0.75
PSI 0.0000 1.0000 0.7751 1.92 1.81
Abgrall–Roe �0.0951 1.0107 0.9143 2.57 1.54
Submesh PSI 0.0000 1.0000 0.8641 2.68 2.30
Caraeni �0.2382 1.2036 1.0001 3.05 2.01
Gradient PSI 0.0000 1.0000 0.8832 3.47 1.23

The figures shown in the first three columns have been obtained on regular 65 · 33 node and subdivided 33 · 17 node triangular meshes.
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meshes used than any of the others. On very fine meshes the submesh reconstruction schemes actually give
higher L1 errors than the PSI scheme. For the original Abgrall–Roe scheme this seems to be because it is
reverting to the unstable central distribution at key nodes, whereas the Submesh PSI scheme may lose accu-
racy because the interpolant is being limited separately on each of the four subcells, affecting the smoothness
of the interpolant.

Higher orders of accuracy are obtained on the structured meshes, though the theoretical values are not
always achieved. There is, for example, still a loss of accuracy in the approximation to the solution gradients
at the boundary nodes, which reduces the order in the L1 norm for the gradient reconstruction schemes. Also,
the effect of the occasional use of a central difference is still visible in the L1 errors of the Abgrall–Roe scheme.
The errors measured in the L1 norm decrease at rates much closer to those predicted by the theory.
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Overall, the gradient recovery methods still give more accurate results than those which use the submesh
reconstruction. In addition, Caraeni’s original scheme is the most accurate of all, which is expected because
it uses an LDA distribution step, known to produce less numerical dissipation than the PSI scheme in the
piecewise linear case. For a smooth solution, where high accuracy is more important than removing the pos-
sibility of small oscillations, such LDA-type schemes are ideal. Approaches based on the PSI scheme are more
appropriate when discontinuities may occur. The very high order of accuracy seen in Table 2 for the L1 error
of the Gradient PSI scheme (higher even than the original Caraeni scheme) is anomalous and suggests that
even on these fine meshes, convergence has not been reached. The limited scheme is always the less accurate
of the two, even at the finest mesh resolution.

Although the imposition of positivity tends to reduce accuracy when applied to Caraeni’s scheme (as
expected) it improves the accuracy when applied to the method of Abgrall and Roe. This is most likely
because, in its original form, the latter approach resorts to a central distribution in some circumstances which,
if used on its own, would be unstable. In contrast, the Gradient PSI scheme has been modified from an LDA
distribution of an unlimited fluctuation. A small drop in accuracy is therefore expected in test cases such as
this where the advection velocity is not constant in space and the solution profile has a turning point, where
the scheme will typically return to the standard, second order, PSI scheme.

The rates of convergence to the steady state of all of the calculations shown in Figs. 3, 4, 6, 7, 9 and 10,
along with those of the corresponding calculations for Test Case C, are illustrated in Fig. 15. No convergence
acceleration techniques, such as local time-stepping, have been applied. All of the methods except that of
Abgrall and Roe converge rapidly to machine accuracy. Among the converging schemes, the N scheme is
the most rapid in each case, and the PSI scheme gives faster convergence when applied to the linear represen-
tation rather than any of the higher order representations. Otherwise, the identity of the most rapidly converg-
ing scheme depends on the level to which the residuals are required to be reduced. It should be noted that the
results presented for the high order limited schemes are for C = 0.25. The simulations still converge to the
same level for C = 0.5 but it invariably takes more than twice as long to do so, even when the same time-step
is used, and provides little difference in the quality of the converged results. For higher values of C, the method
ceases to converge to machine accuracy.

This rapid convergence is encouraging, since recent work by Abgrall [3] has shown that methods based on
the nonlinear mappings, discussed in [8] and used in this paper (see Eqs. (11) and (58)), to impose linearity
preservation on positive schemes might lead to attempts to solve ill-posed algebraic systems. The convergence
of each experiment to machine accuracy and the relatively smooth contours seen in Figs. 9 and 10 suggests
that the algebraic systems, solved here by a pseudo-time iteration, are well posed. It must be emphasised
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though that only the scalar problem has been considered. It has so far proved difficult to maintain this rapid
convergence when the PSI scheme has been extended to nonlinear systems of equations [3] and this is likely to
remain true of the high order PSI schemes proposed here until a better generalisation can be found. In such
situations schemes based on the LDA scheme gain a clear advantage in the simulation of smooth solutions [9].

It was mentioned at the end of Section 3 that a discontinuous representation of the dependent variable
could be used, as long as the discontinuities remained in regions where the underlying flow was smooth. It
is therefore of interest to note where the limiting procedure affects the polynomial. Fig. 16 provides an illus-
tration of this by highlighting the edges along which the solution value at the quadrature point has been mod-
ified (and hence the representation has lost the full order of accuracy) for Test Case B. It shows that the
affected edges are typically in regions where the solution is close to turning points, at peaks and close to zero
on either side. It also shows that for this velocity profile and for a linear equation the region expands as the
profile diffuses.
6. A simple nonlinear equation

The procedure described in the previous section can be extended to nonlinear scalar equations. This is illus-
trated here using a version of the inviscid Burgers’ equation which takes the form
Rubmesh PSIradient PSI00000500000500
0
0000000
0
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ut þ
u2

2

	 

x

þ uy ¼ 0 or ut þ ~r �~f ¼ 0; ð62Þ
where~f ¼ ðu2

2
; uÞT. This is slightly more complicated than linear advection because Simpson’s rule is no longer

accurate enough to evaluate the fluctuation
/ ¼
I

oD

~f �~n dC ð63Þ
exactly. However, it has already been mentioned that the approach can be applied to any order of reconstruc-
tion so, once an appropriate Nq-point quadrature has been chosen, the fluctuation can be written as
I

oD

~f �~n dC ¼
X
edges

XNq

l¼1

wl~f ðulÞ �~n
 !

e

¼
X
edges

XNq

l¼1

wl~f ð�ulÞ �~n
 !

e

þ
X
edges

XNq

l¼1

wl ~f ðulÞ �~f ð�ulÞ
� �

�~n
 !

e

; ð64Þ
where wl are the quadrature weights and �u is the value of the linear interpolant of u at that point along the
given edge.

The polynomial interpolant is limited as before, but now the advection velocity also depends on this value.
However, the only new aspect of the above equation is that it contains a difference in the flux rather than the
dependent variable. This flux difference can be treated exactly as it would in a standard finite volume scheme
(when an appropriate Roe linearisation exists), writing it in the form
~f ðuÞ �~f ð�uÞ ¼
f
o~f
ou
ðu� �uÞ ¼ ~~kðu� �uÞ; ð65Þ
where
~~k ¼ ððuþ �uÞ=2; 1ÞT. One consequence of this is that the time-step limit now depends on the solution, but

as long as this solution is bounded, positivity can be maintained. Thus, for this nonlinear scalar equation, the
fluctuation can be written in the form
I

oD

~f �~n dC ¼ /LO þ
X
edges

XNq

l¼1

wlðul � �ulÞ ~~k �~n
 !

e

; ð66Þ



which has exactly the same structure as the fluctuation given in (34). The interpolant is limited in precisely the

same manner and, because~k ¼ o~f
ou is bounded, this again leads to a positive scheme when an appropriate limit is

imposed on the time-step, cf. (51) and (55). In fact, the procedure is the same as for linear advection, except
that additional quadrature points are used in the integration along each (sub)cell edge. The limiting is carried
out as in (41) and (42) and the minimum value of a taken along the edge, to remain consistent with the limited
correction taking the form du0i1i2

ð~xÞ ¼ C0i1i2
dui1i2ð~xÞ.

6.1. Results

The two-dimensional inviscid Burgers’ equation (62) is approximated here on uniform unstructured trian-
gular meshes covering the domain [0, 1] · [0,1], as shown in Fig. 17, with boundary conditions on the inflow
boundaries (left, right and bottom) given by
uðx; yÞ ¼ 1:5� 2x: ð67Þ

This problem has the exact solution
uðx; yÞ ¼

�0:5 if y P 0:5 and � 2ðx� 0:75Þ þ ðy � 0:5Þ 6 0;

1:5 if y P 0:5 and � 2ðx� 0:75Þ þ ðy � 0:5ÞP 0;

max �0:5;min 1:5; x�0:75
y�0:5

� �� �
otherwise:

8>><>>: ð68Þ
The solutions to this problem obtained using the six approaches described in this paper are shown in Fig. 18,
which shows contour plots of each of the solutions, and Fig. 19, which compares magnified sections of one-
dimensional slices through the profile along the lines x = 0.25,0.5, 0.75,1.0. The new limiting procedure again
removes completely the unphysical oscillations, but the improvement in accuracy obtained by using the higher
order representation is less clear than it was for the linear advection equation.

The differences are most clearly illustrated in the magnified one-dimensional profiles shown in Fig. 19. In all
cases the N scheme is the most diffusive and the two non-positive schemes give oscillations close to the discon-
tinuity. The two positive high order schemes are also both better than the PSI scheme, but the differences are
fairly small, particularly close to the discontinuity, and there is little to choose between the two schemes using
a limited quadratic representation. The convergence histories shown in Fig. 20 show that all of the methods
except the Abgrall–Roe scheme again converge to machine accuracy. The only difference now is that all of the
positive schemes converge at a very similar rate, nearly three times as fast as the LDA-based scheme.
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These schemes have been applied to a range of initial profiles for the inviscid Burgers’ equation (62) and the
results suggest that for smooth solutions, the original Caraeni scheme is the best method to use, but when dis-
continuities appear one of the positive schemes should be applied, the higher order methods giving slightly
sharper shocks than the PSI scheme.
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to the inviscid Burgers’ equation test case for the N scheme (top left), the PSI scheme (top right), the Abgrall–Roe
left), the submesh PSI scheme (middle right), the Caraeni scheme (bottom left) and gradient PSI scheme (bottom right).
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Fig. 20. Convergence histories for each of the methods on the meshes shown in Fig. 17 for the inviscid Burgers’ equation test case.
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7. Conclusion

The issues associated with the construction of a conservative fluctuation splitting scheme which is both
higher than second order accurate and positive have been discussed, leading to the proposal of a modification
which can be applied to any of the existing high order schemes to impose positivity on them. It is then shown
that this produces a family of schemes which can be used to accurately approximate solutions of linear and
nonlinear scalar conservation laws without creating any unphysical oscillations in the solution. The effective-
ness of the approach is illustrated for a third order scheme on unstructured triangular meshes in two space
dimensions. The theory extends straightforwardly to three space dimensions and to arbitrarily high order
schemes but, as with the second order PSI scheme on which the new approaches are based, it is not yet clear
how best to apply this approach to nonlinear systems of equations. The extension to time-dependent problems
is also a challenging issue which is currently being investigated.

The nature of the new scheme, which first produces a limited interpolant of the dependent variable edge-by-
edge, also provides the basis for a p-refinement strategy for fluctuation splitting schemes. This could be imple-
mented by using a modification of the proposed approach to smooth the discontinuities created by having a
difference in the order of the representation between cells on either side of a given edge, giving a continuous
representation and leading to a limited fluctuation and a conservative scheme (which could also be positive if
desired). Alternatively, discontinuities could be allowed and the limiting procedure applied to the interpolant
could be modified to detect discontinuities in the underlying flow and ensure that any such discontinuities in
the representation are kept away from these regions. The resulting scheme would not be conservative, but the
allowed discrepancies should not cause significant errors in the calculations.
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