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Abstract

This paper addresses the issue of constructing non-oscillatory, higher than second order, fluctuation splitting methods
on unstructured triangular meshes. It highlights the reasons why existing approaches fail and proposes a procedure which
can be applied to any high order fluctuation splitting scheme to impose positivity on it. Its success is demonstrated through
application to a series of linear and nonlinear scalar problems, using a pseudo-time-stepping technique to reach steady
state solutions on two-dimensional unstructured meshes.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The fluctuation splitting approach to approximating multidimensional systems of conservation laws has
developed to a stage where it can be used reliably to produce accurate simulations of complex steady state
fluid flow phenomena using unstructured meshes [12]. The most commonly used methods are second order
accurate at the steady state, which is deemed accurate enough for simulating a wide range of flows and, in
the presence of discontinuities, they are also required to avoid introducing unphysical oscillations into the
flow. Within the fluctuation splitting framework, the PSI scheme [13] (or one of its variants) has provided
the basis for a range of methods which have successfully achieved these goals, particularly for the scalar case.
It is a nonlinear upwind scheme which, when it is used to simulate scalar conservation laws, exhibits second
order accuracy at the steady state for smooth solutions, guarantees positivity (even in the presence of discon-
tinuities), and gives rapid convergence to the steady state, all without the necessity for additional artificial
viscosity.
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Generalisations of the PSI scheme have been developed for application to nonlinear systems of equations
[19]. The most commonly used schemes for systems take the form of matrix distribution schemes. A nonlinear
matrix distribution form of the PSI scheme exists, but it has so far proved more successful to reinterpret the
PSI scheme as a nonlinear “‘blending” of two linear schemes, the non-oscillatory N scheme and the second
order accurate LDA scheme, both of which have natural matrix forms which can be applied to nonlinear sys-
tems of equations [1]. Additional research, which led to the development of wave decomposition models (see
[19] for a summary), has shown that by preconditioning the equations, an optimal decoupling can be achieved.
This allows for scalar components, which take the form of advection equations, to be split off so that they can
be approximated independently using the original PSI scheme [13], before recombining the components to give
a conservative update to the solution. The work presented here demonstrates that it is possible to create a
scheme which combines positivity with a higher order of accuracy (as well as higher accuracy) than the PSI
scheme at the steady state. The discussion will be restricted to scalar equations, which can be applied directly
to the simulation of passive transport phenomena or individual components of a more complex system,
though their use in the latter is left to future research, since it is not yet clear what their ideal extension to
nonlinear systems should be.

More recently, research has focused on the development of more accurate fluctuation splitting methods, for
both steady state and time-dependent problems. This has led to the creation of a number of third and higher
order accurate schemes, each one based on a standard approach to constructing a higher order representation
of the dependent variables.

The first third order fluctuation splitting scheme to be developed was that of Caraeni et al. [10,11], who
created a quadratic representation within each mesh cell via the reconstruction of local gradients of the depen-
dent variables at the mesh nodes, obtained using the surrounding data. The resulting fluctuation was distrib-
uted using the non-positive LDA scheme [13] so, although the results shown for smooth viscous fluid flow and
turbulence transport were excellent, unphysical oscillations still occur in less smooth situations.

Abgrall, along with Roe [8] and Mezine and Andrianov [4,7], proposed a similar idea, but constructed the
higher order fluctuation using extra information about the dependent variable stored at the additional nodes
created by a uniform global subdivision of the mesh. The solution is stored and updated at all of the submesh
nodes and the distribution of the fluctuations is carried out on the subtriangles. The proposed third (and
higher) order schemes are almost non-oscillatory.

A third, less successful, approach was proposed by Hubbard and Laird [17], who obtained higher order by
extending the stencil of the distribution of the second order fluctuations. It was highly sensitive to the mesh
structure, and lacked robustness, but the underlying concept (of extending the stencil) remains valid as an
approach to achieving higher order accuracy if it is used instead to construct a higher order representation
of the dependent variable.

This work will consider the first two of these techniques for constructing a continuous piecewise quadratic
interpolant, which leads to third order methods. This higher order interpolant is used to construct a more
accurate fluctuation which, if distributed completely using bounded distribution coefficients, gives a high order
method [1,6]. It is straightforward to generalise the concepts to higher than third order, though the implemen-
tation will be more complicated.

Each approach has achieved higher than second order accuracy for the scalar advection equation, and that
of Caraeni et al. has already shown a great deal of promise in more practical situations. However, none of
them has yet combined this with positivity, except with the aid of the flux-corrected transport (FCT) algorithm
[18,24] used with second order schemes in [14,17]. This paper will propose a method for imposing positivity on
these high order schemes which avoids the use of any post-processing techniques such as FCT and has the
additional benefit (not discussed here in detail) of providing a simple framework for creating a positive
p-refinement algorithm for fluctuation splitting.

The research presented considers the scalar advection equation and a form of the inviscid Burgers’ equa-
tion, approximated on two-dimensional, unstructured, triangular meshes. The fundamentals of first and sec-
ond order fluctuation splitting schemes will be summarised in Section 2, after which the existing high order
methods, of Caraeni et al. [10] and Abgrall and Roe [8], will be outlined in Section 3, along with the reasons
underlying their lack of positivity. The discussion will suggest a modification which can be applied to any of
these approaches in the steady state case to impose positivity on the scheme, and this is presented in detail in
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Section 4. A series of results for standard linear and nonlinear test cases will be given in Sections 5 and 6 to
illustrate the effectiveness of the new approach at removing unwanted oscillations without unduly affecting the
underlying scheme’s accuracy. Finally, some conclusions are drawn in Section 7, alongside a brief description
of possible directions for future work.

2. Fluctuation splitting

Consider the two-dimensional scalar conservation law given by
w+fitg, =0 or u+7i Vu=0, (1)

on a domain Q, with u(x, y,t) = h(x, y,t) imposed on the inflow part of the boundary 0Q. i= (%,%)T defines
the advection velocity associated with the conservation law. This equation has an associated fluctuation, as-

sumed here to be calculated over a triangular mesh cell 4 and given by

¢:—/I~ﬁud9:?{u1~ﬁdf, (2)
A o4

in which # represents the inward pointing unit normal to the cell boundary. When u is assumed to have a piece-
wise linear continuous representation with values stored at the mesh nodes, the discrete counterpart of ¢ is
evaluated using an appropriate (conservative) linearisation [13]. Ideally, this allows the integration in Eq.
(2) to be carried out exactly, giving

7 = 1
¢:—SAA-Vu=—§Zui

icd

o

7, (3)

where S is the cell area and the symbol ~ indicates an appropriately linearised quantity, in this case the local
advection velocity. The index i loops over the vertices of 4, and 7; is the inward unit normal to the ith edge
(opposite the ith vertex) multiplied by the length of that edge. This linearisation is straightforward in the spe-
cial cases of divergence-free linear advection and Burgers’ equation, the examples which will be used later in
this paper. In both cases it equates to taking the arithmetic mean of the cell vertex values.

A simple forward Euler discretisation of the time derivative leads to an iterative update of the nodal solu-
tion values which is generally written as

=g+ 5 S g, @
b jeud;
where At is the time-step, S; is the area of the median dual cell corresponding to node 7 (one third of the total
area of the triangles with a vertex at 7), o is the distribution coefficient which indicates the appropriate pro-
portion of the fluctuation ¢; to be sent from cell j to node i, and U4; represents the set of cells with vertices at
node i. Conservation is assured as long as

dal=1 Y (5)

ich;

where 4; represents the set of nodes at the vertices of cell j, i.e. the whole of each fluctuation is sent to the
nodes. Note that the distribution has been restricted here so that a cell can only make contributions to nodes
at its own vertices, allowing the scheme to be implemented very efficiently. The time derivative term in this
construction is included here purely as a device for iterating to the steady state, but its presence would be nec-
essary for time-dependent problems, in which case it must be integrated in a manner consistent with the under-
lying representation of u if the order of accuracy of the steady state approach is to be maintained [4,10].

2.1. The N scheme
The most successful attempts to impose positivity on higher than first order fluctuation splitting schemes

rely heavily on the linear first order, positive fluctuation distribution scheme known as the N scheme [13],
which is defined as follows:
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1 For each triangle, locate the downstream vertices, i.e. those for which 7 i; > 0, where #; is the inward
pointing normal to the edge opposite vertex i.
2a If a triangle has a single downstream vertex, node #; say (cf. Fig. 1), then that node receives the whole fluc-
tuation ¢, so
At
Uiy — U +_¢)7 (6)
S;,
while the values of u at the other two vertices remain unchanged.
2b Otherwise, the triangle has two downstream vertices, i; and i, say (cf. Fig. 1), and the fluctuation ¢ is
divided between these two nodes so that

At At
Uy — Uy, +S—l_]¢i1, up, = i, + S—l_z%a (7)
where
15 1+
¢i1 :—Ei'”il(“n —Ui3)a ¢i2:_§/“'niz(uiz_ui3)v (8)

in which i3 denotes the remaining (upstream) vertex of the triangle. It is easily shown that ¢, + ¢, = ¢ (for
conservation).

The distribution coefficients, «/ in Eq. (4), can be derived easily from Eqs. (6)—(8). The resulting scheme is
clearly locally, and hence globally, positive so the iteration given by (4) is conditionally stable. The appropriate
restriction on the time-step at node 7 is given by

Si

g max (0.4 7)

Results: The test case used here to illustrate the properties of each scheme consists of advection in a circle, with

velocity 4 = (y, —x)T and over the domain [—1,1]x [0, 1], of the initial profile given by
G(x) for —0.65<x<—-0.35 y=0,

u(x,,0) = :

0 otherwise.

At <

©)

(10)

This is also imposed as the boundary function /(x,y,f) on the inflow boundaries of the domain while the
experiment is run to steady state. The exact solution is u(x,y) = G(r) for 0.35 <r = /x* + y* < 0.65, with
u(x,y) = 0 elsewhere. In this case V-7 =0, so the advection equation and the conservation law are equivalent
and the conservative linearisation is simple [13].

Results are shown in Fig. 3 for a uniform but genuinely unstructured triangular mesh consisting of 3806
nodes and 7370 cells (dx =~ 0.025), shown at the top of Fig. 2. The two cases used are defined by

Case A: G(r) =1, which illustrates the positivity of the scheme;
Case B: G(r) = cos*(10n(r + 0.5)/3), which is more appropriate for determining the scheme’s ability to main-
tain a smooth peak without artificially steepening the profile.

i 19
/
/
11 A
One Target Two target

Fig. 1. The splitting of the fluctuation distribution into one and two target cases.
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Fig. 2. The meshes used for the advection equation results obtained with the N, PSI and gradient recovery schemes (top) and the submesh
reconstruction schemes (bottom).

The solution profile along the outflow boundary at y = 0 would ideally reflect the profile at inflow exactly,
but both here show the significant level of numerical diffusion incurred. This is unsurprising as the method is
easily shown to be at best first order accurate [13].

2.2. The PSI scheme

The nonlinear PSI scheme, devised by Struijs [23] and formulated algebraically by Sidilkover and Roe [22],
is the most commonly used of the second order positive fluctuation splitting schemes, and is easily defined
once the N scheme has been described. _ .

Given that the contribution made by cell j to node i by the N scheme can be written as (¢/) = (oc{)Nqu,
where ¢; is the fluctuation in cell j (see (3)), the contributions due to the PSI scheme can be defined as follows:

(('b/l')PSI _ [(af)NT
’ DI (CAR

in which [ " denotes the positive part of the quantity within the square brackets. This scheme has a number of
notable properties (for all nodes i and cells j):

¢, = ()™ e, (11)
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Fig. 3. The N scheme applied to Test Case A (top) and Test Case B (bottom).

e The scheme is conservative because

D)= )N =1 (12)
ked; ked;

o (of )PSI(ocf)N > 0, so the scheme is positive for an appropriate range of time-steps.

o ()™ < |())N], so the limit on the time-step given by (9) is sufficient to maintain this positivity.

e (/)" €10,1] is bounded, so the order of accuracy of the steady state scheme is equivalent to the order of

the error in the representation of ¢ (in this case second order) [1,6]. This property is often referred to as
linearity preservation.

Results: The results for the PSI scheme are shown in Fig. 4 using the same mesh as before (shown at the top
of Fig. 2). The improvement in accuracy over the N scheme is clear, as is the lack of oscillations. This is con-
firmed by the more comprehensive comparison of results supplied in Section 5. However, the outflow profile
still does not reflect the inflow profile exactly (the square wave has clearly had its “corners’” smoothed while
the smooth profile has lost height on its peak value) and could be improved by incorporating a more accurate
representation of the dependent variable into the method.

3. Higher order methods

A range of techniques exist for extending numerical algorithms to higher order accuracy. Two which have
been successfully applied to fluctuation splitting will be described here as a precursor to the introduction of the
proposed approach for imposing positivity.

3.1. Submesh reconstruction

The scheme of Abgrall and Roe [8] is based on a simple generalisation which differs mainly from the
schemes described in Section 2 in that the fluctuation ¢ is approximated using a higher order polynomial rep-
resentation of the dependent variable. The procedure can be extended to arbitrary orders of accuracy and to
three space dimensions, but only the two-dimensional, third order case will be considered here.
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Fig. 6. The Abgrall-Roe schemL applied to Test Case A (top) and Test Case B (bottom).
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3.2. Gradient reconstruction

One alternative to subdividing the mesh to provide the additional degrees of freedom necessary to recon-
struct quadratic polynomials is to recover solution gradients at the mesh nodes and use these to obtain a qua-
dratic interpolant. This approach was taken by Caraeni and his collaborators [10,11]. The first stage of the
procedure used approximates the cell gradients using the Green—Gauss formulation, given by

.1

approximating the integral along each cell edge using the trapezoidal rule. These are then used to obtain an
approximation to the nodal solution gradients from

Vi =——— 1S4, Vi, (17)
Z/GUA |SA | j; g

This is second order accurate on uniform meshes but loses this property on the unstructured meshes shown in
Fig. 2, most seriously along the “diagonals” which clearly appear in the mesh structure, emanating from each
corner of the domain.

When quadrature is used to evaluate the fluctuations (2), the midpoint values of u are required (in the lin-
ear, third order case), and these are defined here by

u;, +u; ﬁui —Vui o 5
Umid = l ) 24+ : 3 2. (xiz _xi1)7 (18)

where 7/; and i, denote the vertices at each end of the mesh edge. This is used to calculate a high order fluc-
tuation within the cell, which is then distributed using the LDA scheme. As with the other schemes, the dis-
tribution of the fluctuation within each cell remains local to that cell. However, the reconstruction of the
gradient used in (17) takes information from the surrounding cells so the stencil of the scheme is not local,
and for even higher order accuracy the stencil would need to be extended further in order to provide approx-
imations to higher derivatives. The submesh reconstruction approach encounters a similar issue, in the sense
that the stencil of the scheme used to update a given node extends beyond the adjacent subcells, but the struc-
ture inherent in the subdivision ensures that the distribution of the fluctuation within a full mesh cell only de-
pends on information within that cell, whatever the order of accuracy required.

The gradient reconstruction scheme is not positive (and was never intended to be) but does achieve higher
order accuracy, and gives excellent approximations to a range of smooth solutions [9-11].

Results: The results obtained using Caraeni’s scheme are shown in Fig. 7 using the same mesh as was used
for the N and PSI schemes (the top mesh of Fig. 2). The improvement in accuracy is clear in the modelling of
the smooth profile but the effects of its lack of positivity are equally apparent in the test case involving the
discontinuous profile. This is confirmed by the evidence presented in Tables 1 and 2 of Section 5.

3.3. The problem

In the following discussion d)?o will be used to denote the fluctuation within a mesh cell or, for any scheme
based on uniform subdivision of the mesh, subcell indexed by j and evaluated from the high order (quadratic)
interpolant. d)];o will denote the fluctuation within the same (sub)cell but evaluated from the low order (linear)
interpolant. The analysis follows that given in [15] and closely resembles that presented in independent work
by Ricchiuto et al. [21] and Abgrall [2].

Three situations are worthy of discussion, none of which arises in the PSI scheme because, in that case,
(;5?0 = $pLO.

1. qSHOd)LO < 0 for some (sub)cells j, i.e. the high and low order fluctuations can have dlfferent signs. This is
most damagmg when the N scheme gives only non-negative distribution coefficients (o ) In such cases the
procedure used by the Abgrall-Roe scheme (13) which, in the second order case, imposes linearity preser-
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vation on the N scheme and leads to the PSI scheme, now gives zero distribution coefficients for every ver-
tex of the (sub)cell, clearly violating conservation. The modified form given in (15) avoids this loss of con-

servation, but only by reverting
positive. The resulting scheme is
verge to steady state solutions.

to a central discretisation, o = % Vi € 4;, in such situations, which is not
also not continuous, which can present problems when attempting to con-

2. |q5j.{0| > |q5jLO| for some (sub)cells j, even when ¢?O¢}O = 0, i.e. the magnitude of the high order fluctua-
tion can be much higher than that of the low order fluctuation, even when they have the same sign. Since

the ratio of the two fluctuations

is unbounded this can seriously restrict the condition (9) required for the

time-stepping procedure to remain positive, and hence the speed with which a positive steady state approx-

imation can be found (if one ey

en exists).

3. The most troublesome case of all, which occurs in many (sub)cells in Test Case A, is when qSIHO is nonzero in

a (sub)cell for which u;, = u;, =
(sub)cell j in a conservative mar
be achieved without prior know
it is not possible to construct a

u;,. In such situations it is impossible to distribute qﬁj}.lo to the vertices of
iner while maintaining local positivity. Global positivity cannot therefore
edge of the contributions from elsewhere. The consequence of this is that
positive fluctuation distribution scheme which is conservative and higher

than second order accurate if the distribution of the fluctuation in a (sub)cell is restricted to be only to
the vertices of that (sub)cell. Thus one of the main design criteria used in the development of fluctuation

splitting methods cannot be enfl

orced.

Remark. At this stage of the development of a high order non-oscillatory finite volume scheme a limiter would

be introduced to combine the | low|

order positive scheme with the high order non-positive scheme. Applying

such an approach here (at least in the manner traditionally employed in finite volume schemes) would lead to

an inconsistency in the calculations

of fluctuations in neighbouring (sub)cells, in that the edge contributions in

the boundary integrals in (2) \would no longer necessarily cancel at internal edges, leading to a non-
conservative scheme. This is an issye which this work seeks to address, though it is worth noting that Abgrall
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particular, if discontinuities in the representation could be confined to smooth regions of the flow then the lack
of conservation should not have a detrimental effect on the quality of the solution. This possibility will not be
explored here, but the results produced suggest that a scheme of this form might be constructed in the future
(see Fig. 16 and the accompanying discussion in Section 5).

4. Suppressing the oscillations

A number of techniques exist which can be used to remove unphysical oscillations from computational sim-
ulations of hyperbolic conservation laws. For example, the flux-corrected transport (FCT) approach [18,24] is
widely used and has been applied within the fluctuation distribution framework [14,16,17]. In this work
though, the intention is to incorporate local positivity within the method itself, rather than applying a
post-processing step once low and high order updates have already been calculated.

It has been observed that, in the submesh distribution framework of Abgrall and Roe [8], it is always pos-
sible to distribute the high order fluctuation of the full mesh cell J, $}'© = 3" deed, 1, to the six subvertices of
that cell in a manner which is both conservative and locally positive [2,15,20]. However, this observation has
yet to yield a scheme which combines positivity with high order accuracy. The schemes presented in [15] strove
for higher order accuracy, and although they improved on the PSI scheme in some cases and were free of oscil-
lations, they could not be proved to be positive. That technique is also essentially still a post-processing step,
can only be applied if the submesh reconstruction approach is used to obtain higher order accuracy, and does
not offer a straightforward generalisation to higher orders of accuracy. A second, considerably more successful
and flexible approach, will be presented here.

4.1. Limiting the interpolant

The modification presented in [15] addresses the problem of distributing the high order fluctuation in a pos-
itivity-preserving manner by, essentially, extending the stencil. An alternative approach is to modify the inter-
polant (and hence the fluctuation) in a manner which allows a positive distribution scheme within the existing
framework, i.e. one where the fluctuation in a (sub)cell is only distributed to that (sub)cell’s vertices. The linear
interpolant used in the second order scheme has already led to positive schemes of this type, e.g. N, PSI, so the
challenge is to find a procedure (similar in aim to flux/slope limiting in finite volume schemes) which can be
used to add a “limited”” amount of a high order correction to a low order scheme to improve its accuracy while
maintaining positivity.

The approach to approximating equation (1) taken here consists of two stages. First it is necessary to apply
a simple adjustment to the interpolant, so that it is possible to distribute the resulting fluctuation within each
triangular (sub)cell to its vertices in a locally positive manner. Once the fluctuation due to this adjusted inter-
polant has been calculated, a second modification needs to be made, this time to the distribution scheme.

In order to determine the adjustment which must be made to the interpolant, consider #(X), the linear inter-
polant of the values of the dependent variable u at the vertices of a given triangular (sub)cell, and du(¥) the
high order correction to the interpolant over that triangle, for which #(¥) 4+ éu(¥) is a high order representa-
tion of the data within that triangle (independent of the method used to obtain it).

The fluctuation due to the high order interpolant is given by

N iy o 15 o iy N
fux-ﬁdr:Z/ u/l-ﬁdF:Z[/ m-ﬁdr+/ Su)uﬁdf}, (19)
o4 i i

edges edges i 1

in which #; and 7, represent successive vertices around the triangular mesh (sub)cell (in an anticlockwise sense).
The first term on the right-hand side can easily be distributed in a positive manner using, for example, the N or
PSI scheme. The second is more problematic so here it is replaced by a “limited”” high order correction term
which should return the high order interpolant whenever possible, but restrict the correction where this is nec-
essary to achieve positivity.
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It is simple to show that if the high order correction along each edge i;i, of the triangle is limited to give a
modified high order correction du'(¥) along that edge which satisfies

0w . (X)] < Cluy, —uy| V¥ = ¥y, + (1 — )X, 0<pu<1, (20)

iy
for some finite constant C > 0, then, subject to an appropriate restriction on the time-step in (4), it is possible
to distribute the fluctuation (2) due to the modified interpolant «'(X) = u(¥) + du/(X) to the vertices of that
mesh (sub)cell in a locally positive manner.

The proof is straightforward once the fluctuation due to the “limited” interpolant «'(¥) is written in the
form

o i o in o %) o
f Wiidl =" / Wiidl =" U m-ﬁdr+/ 6u’i~ﬁdf]. (21)
o4 edges Vi1 edges LY 11 i
By defining a function o;,, (¥) for each edge, which is given by
Su;ﬂz ()_C') = iyiy (f)(ull - uiz)a (22)

it follows immediately that imposing (20) on this edge leads to |o;,;,(¥)| < C for any ¥ on the edge, and then
from (21) that

iy 2
f Wi-adr =" U o _uiz)z.ﬁdr+/ a}ﬁdl‘} (23)
o4 edges i i

Clearly, given that o is bounded, this additional component can be distributed in a positive manner (for an
appropriate limit on the time-step) by sending the component corresponding to the integral along edge i,
to vertex i; or i, depending on the sign of the integral.

The following discussion suggests a particular form for the distribution which makes use of the notion of
upwinding, as introduced in the description of the N scheme, and leads to the modified schemes proposed
here. Noting that

(=) = (ur — ) — (i — wy), (24)
and that, from (3), the low order fluctuation on the mesh (sub)cell is
1 g
P = =) > i, (25)
ied

for an appropriate linearised advection velocity 7, leads to
- 1 5 1 5 J - k -
fAu'lﬁdfzz(u,—uj)/lﬁ]+§(u,—uk)/1ﬁk—|—/ Oﬁij(ui—Uj))»'ﬁdF—/ OCjk(u[—Uj))v'ﬁdF
0. i J
i . k .
7/ aki(uifuk)g.ﬁerr/ o (us — uy) 7 - 7 T, (26)
k j

where 7, j and k represent the three vertices of the (sub)cell under consideration and are chosen arbitrarily, but
taken in an anticlockwise sense. This immediately gives

- E A ke
% W'l -ndl = Bﬂn-ﬁ,—i—/ ot,-,-/l-fidF—/ ocjki-ﬁdf}(u[—uj)
o4 i J

= Kij(u; —u;) + Ky (u; — ui). (27)

Since «(X) is bounded, so are Kj; and Kj. In fact, simple bounds can be derived, for example,
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15 J o L. 15 S Lo
i j i j
1= S LT 1= - fal
gi/l-anr lof| 2 -d| Al + [ ||| A-7d] AT’ < E/l'nj +C | |A-#|dl +C [ |A-#A|dl
i J i J
1= - -
< El-ﬁj +C|:Il;lj.]?(|l-ﬁk|—i—I}ljlkXM-ﬁA]. (28)

Similar expressions can be derived for K. It then follows that the limited fluctuation, in the form (27), can be
used to produce a locally positive update to the dependent variable u as long as Az is small enough, and that
the bound on the stable time-step satisfies Az = ¢(C™").

Remark. This proof is valid for interpolants of any order of accuracy, but for clarity the presentation below
will be based on a third order (quadratic) interpolant. It is conceptually straightforward to extend this to
higher order situations.

4.2. A limited third order scheme

Consider the two-dimensional scalar advection equation
w47 - Vu =0, (29)

where, for the purposes of this illustration, P is assumed to vary linearly in space, u is assumed to vary in a
piecewise quadratic manner in space, and V - 2 = 0. This last condition means that the fluctuation can be
written

¢=—/I.v*udgz:—/v*-(;7u)d9:7{uz.ﬁdr, (30)
A A o4

where 7 is the inward pointing normal. Since  is quadratic and 7 is linear on the triangle, applying Simpson’s
rule along each edge of the triangle evaluates the fluctuation exactly, giving

M,“"Mj

)Z:,--ﬁk+u/1j~ﬁk+4(uzf —ui+uj)zi/'ﬁk}

faAuZ-ﬁdF:é[uizi-h’k+4( 3

1 - ui +u\ - P ui+u\»
+6[u,ljn,—|—4(]2 k)l,k-ni+ukik-ni+4(ujk— 12 k)/u_,-pn,}

Uy, Jruz)zki i+ uizi A+ 4(’%‘ Ui er ”’)/Tki . ,7[]}7 (31)

+é [uk;:k-ﬁ_,-—i—4(

where 7, j and k are again the vertices of the triangular (sub)cell, taken anticlockwise. The values u;, uy and uy;
represent the interpolated values of the dependent variable at the midpoints of each of the cell (for the Caraeni
scheme) or subcell (for the Abgrall-Roe scheme) edges. For higher order representations of the interpolant the
above expressions become more complicated due to the terms required for the additional quadrature points
used to integrate the fluctuation exactly.

At this point it is still possible to limit the (sub)cell fluctuation as a whole rather than considering the inter-
polant along each edge separately, as will be done here. Although it would most likely lead to a discontinuous
representation of the dependent variable, this may not be a problem in practice, as long as all of these discon-
tinuities lie in regions where the solution itself is smooth [5]. The results illustrated in Fig. 16 suggest that this
may indeed be the case but this possibility will be left as future work because the analysis of Section 4.1 sug-
gests that the fluctuation should be split into edge-based components, as is done in the N scheme, and as soon
as an edge-based limiting procedure is considered, the continuous representation used here results
automatically.

Now note that, for linear u and linear 1 satisfying V -/ =0, the fluctuation can be written as
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A 2
)li,--nk+u/-ﬂ,-~nk]

Ir - u +up\ > -
+g[u,/1,n,+4( / B )ijk'ni‘f'ukik'ni}
1 > +uN - L EOn
+6|:Uk;bkn/+4(uk2 u)/tk,n/“y‘u,/blnl}, (32)
so, since in this case
/I-%dg:(/Idg).v*uzsdi-v“u, (33)
A A

where 7 = (;:l + Zj + Zk)/3, it follows from (3) that in the high order case

- 1 =, 1 5, 1 5 _ 2 w+uN-> _ 2 U +u\=»
fimu)wndf:—zu,w- ,-—Euji-n‘,-—EukA-nk+§(uij——2 ])A,-j-nk—i—g(ujk— ]2 )},jk-nl-
2 up + u;\ » -
+§(Mk,-— kz )k,-'l/lj. (34)

As it stands this fluctuation, evaluated over a mesh cell for the Caraeni approach or a subcell for the Abgrall-
Roe scheme, cannot be distributed to the vertices denoted by the indices 7, j and k in a manner guaranteed to
be positive. In order to allow this, the interpolated values at the midpoints of each of the (sub)cell edges, u;;, ujx
and wuy; are limited so that they satisfy (20) and (22). For cubic or higher order representations the limiting is
applied to the values at all of the quadrature points along each (sub)cell edge, i.e. the quadrature points on the
subcell edges for the Abgrall-Roe scheme but on the full cell edge for the Caraeni approach.

The midpoint values are limited so that new values, u;;, u, and u;;, are created for the dependent variable
which, following (20), satisfy

/ _uf+uj

ij < Cluy — uyl,
u+u

Uy — / 5 k’ < Clu; — wyl, (35)
U, + u;

”;a'_ kz | < Clug — uy,

where C > 0 is some specified constant. In the general case, the higher order polynomial would be limited to
ensure that the above relations were satisfied at every quadrature point, not just the midpoints. The optimal
choice for C remains an open question, but three significant values are

e C =0, which simply returns the linear representation (and, ultimately in the proposed scheme, leads to the
PSI).

e C=0.25, which is the largest value that guarantees that the limited interpolant along each edge is mono-
tonic (in the quadratic cas